應物系

U形單元及具有U形共平面電極單元之液晶元件

本發明為在提供一種具有高深寬比之U形單元構造,其該側部自身之厚度與高度間之比值介於1:2至1:20之間。藉由各該側部所具有高窄形狀來提供作為微電子技術領域中的元件構成,例如作為增加橫向電場強度、增加散熱表面積或作為光學元件。

閱讀詳細資料

半導體奈米層狀結構及其製作方法 semiconductor nano layer structure and manufacturing method thereof

本發明提供一種可獨立存在的半導體奈米層狀結構,其包含至少一半導體奈米線膜,半導體奈米線膜由多數獨立成形之半導體奈米線彼此以特定或任意角度交織排列而形成。本發明並提供一種半導體奈米層狀結構的製作方法,先在第一基板上合成一半導體奈米線陣列,再以一具有一吸附表面的第二基板與第一基板壓合,令半導體奈米線斷裂壓擠形成一緻密的半導體奈米層狀結構,並進行離膜程序,令半導體奈米層狀結構脫離第一及第二基板,再進行一局部電焦耳熱鍵結熔合,令半導體奈米層狀結構之各半導體奈米線彼此熔接或各半導體奈米層狀結構彼此熔接。

閱讀詳細資料

飛機著陸導引系統及方法 AIRCRAFT LANDING-GUIDING SYSTEM AND METHOD

本發明提供一種導引一飛機安全降落於一跑道的飛機著陸導引系統,包含一紅外雷射光源、一光學圖像產生裝置、一紅外光偵測系統以及一圖像辨識分析系統。紅外雷射光源朝一最佳著陸路線發射具有一特定波段及一低發散角之一具特定偏振的紅外雷射光束。紅外雷射光束通過光學圖像產生裝置後,於空間中產生具有定向輻射的一光學圖像,光學圖像朝著最佳著陸路線方向投射。紅外光偵測系統配置於飛機上,用以偵測光學圖像。圖像辨識分析系統配置於飛機上,用以辨識及分析光學圖像,並輸出一回饋信息用以導引飛機安全著陸。

閱讀詳細資料

以高動態範圍臨界值切割單一神經元影像的方法及其電腦可讀儲存媒體Method of Segmenting Single Neuron Images with High-Dynamic-Range Thresholds and Computer Readable Storage Medium Thereof

本發明之以高動態範圍臨界值切割單一神經元影像的方法包含(a)備置含神經元之生物組織樣本,並對含神經元之生物組織樣本進行三維成像,以得到原始三維神經影像;(b)濾除原始三維神經影像中訊號強度在第一訊號強度臨界值以下的立體像素,以得到第一經濾除影像;(c)對第一經濾除影像進行骨架追蹤,以得到第一經追蹤影像;(d)利用一方程式計算第一經追蹤影像之每一立體像素的結構重要性分數,以得到每一立體像素的第一次結構重要性分數;(e)逐漸增加訊號強度臨界值並重複步驟(b)、(c)及(d)n-1次;及(f)加總每一立體像素的第一次結構重要性分數一直到第n次結構重要性分數。

 
 

閱讀詳細資料

以高動態範圍臨界值切割單一神經元影像的方法及其電腦可讀儲存媒體Method of Segmenting Single Neuron Images with High-Dynamic-Range Thresholds and Computer Readable Storage Medium Thereof

The method of segmenting single neuron images with high-dynamic-range thresholds of the present invention includes (a) preparing a biological tissue sample containing neurons and performing imaging to this sample to obtain a three-dimensional raw neuroimage; (b) deleting voxels in the three-dimensional raw neuroimage with signal intensities below a first signal intensity threshold to obtain a first thresholded image; (c) tracing the first thresholded image to obtain a first traced image; (d) calculating a structural importance score of every voxel in the first traced image to obtain a first structural importance score of every voxel; (e) gradually increasing the signal intensity threshold and repeating (b), (c) and (d) n−1 times; (f) summing up all the n structural importance scores of every voxel; (g) deleting voxels with summed structural importance score smaller than a pre-determined value from the raw image to obtain the segmented single neuron.

閱讀詳細資料

筆直直立奈米線陣列結構及其製造方法 Vertically Oriented Nanostructure and Fabricating Method Thereof

一種筆直直立奈米線陣列製造方法,可在非晶基板上合成筆直直立奈米線陣列結構,進而應用於抗反射表面、場發射顯示器及薄膜太陽能板,藉以提升其效能。本方法主要包括下列步驟:控制氣相沉積環境之一電子濃度及濃度梯度、各種離子濃度及濃度梯度、各種自由基(Radical)濃度、濃度梯度及傳輸方向。控制氣相沉積環境之一長晶熱源方向、基板溫度及基板周遭環境之溫度梯度。控制氣相沉積環境之一電位梯度。

閱讀詳細資料

半導體奈米層狀結構及其製作方法 semiconductor nano layer structure and manufacturing method thereof

A method for manufacturing a semiconductor nano layer structure includes: two substrates are provided; a plurality of semiconductor nanowires are formed on one of the substrates; an absorption surface is formed on the other substrate; one of the substrates is fixed on a cylindrical roller, the cylindrical roller is brought into contact with a surface of the substrate which is stationary and is not fixed on the cylindrical roller, and rolled with a constant velocity and pressure so that the semiconductor nanowires are break, detached, transferred and absorbed, and a semiconductor nano layer structure is formed on the stationary substrate; a de-laminating process is performed to separate the semiconductor nano layer structure from the second substrate; an electric Joule heat welding process is locally performed to bond each of the semiconductor nanowires of the semiconductor nano layer structure or each semiconductor nano layer structure.

閱讀詳細資料

筆直直立奈米線陣列結構及其製造方法 Vertically Oriented Nanostructure and Fabricating Method Thereof

A vertically oriented nanometer-wires structure is disclosed. The vertically oriented nanometer-wires structure includes a non-crystalline base and many straight nanometer-wires. The straight nanometer-wires are uniformly distributed on the non-crystalline base, and the angle between each of the straight nanometer-wire and the non-crystalline base is 80-90 degrees. The straight nanometer-wires structure can be widely applied in semiconductor, optoelectronic, biological and energy field. What is worth to be noticed is that the non-crystalline base can be glass, ceramics, synthetic, resin, rubber or even metal foil, and the straight nanometer-wires and the non-crystalline base are still orthogonal to each other.

閱讀詳細資料

分類清單